This will count as one of your downloads.
You will have access to both the presentation and article (if available).
High performance polarizers can be obtained with optimized coatings. Interference coatings can tune polarizers at the spectral line(s) of interest for solar and stellar physics. Polarizing beamsplitters consist in polarizers that separate one polarization component by reflection and the other by transmission, which enables observing the two polarization components simultaneously with a single polarizer. They involve the benefit of a higher efficiency in collection of polarization data due to the use of a single polarizer for the two polarization components and they may also facilitate a simplified design for a space polarimeter. We present results on polarizing beamsplitters tuned either at 121.6 nm or at the pair of 155 and 280 nm spectral lines.
GOLD’s research is devoted to developing novel coatings with enhanced performance for space optics. Several deposition systems are available for the deposition of multilayer coatings. A deposition system was developed to deposit FUV coatings to satisfy space requirements. It consists of a 75-cm-diameter deposition chamber pumped with a cryo-pump and placed in an ISO-6 clean room. This chamber is available for deposition by evaporation of top-requirement coatings such as Al/ MgF2 mirrors or (Al/MgF2)n multilayer coatings for transmittance filters. A plan to add an Ion-Beam-Sputtering system in this chamber is under way.
In this and other chambers at GOLD the following FUV coatings can be prepared:
Transmittance filters based on (Al/MgF2)n multilayer coatings. These filters can be designed to have a peak at the FUV spectral line or band of interest and a high peak-to-visible transmittance ratio. Filters can be designed with a peak transmittance at a wavelength as short as 120 nm and with a transmittance in the visible smaller than 10-5.
Narrowband reflective coatings peaked close to H Lyman β (102.6 nm) with a reflectance at H Lyman α (121.6 nm) two orders of magnitude below the one at 102.6 nm. Other potential spectral lines at which these coatings could be peaked are the OVI doublet (103.2, 103.8 nm).
Narrowband reflective mirrors based on (MgF2/LaF3)n multilayers peaked at a wavelength as short as 120 nm. Target wavelengths include lines of high interest for space observations, such as H Lyman α (121.6 nm), OI (130.4 and 135.6 nm), CIV (154.8, 155.1 nm), among others.
Coating-based linear polarizers tuned at H Lyman α (121.6 nm) both based on reflectance or on transmittance. Reflective polarizers present a high efficiency. Transmissive polarizers have a more modest peak performance compared to reflective polarizers; however, they involve spectral filtering properties to reject the long FUV and even more the near UV to the IR, which turn them competitive compared to reflective polarizers.
In this communication we present a summary of our research on the above FUV coatings developed at GOLD.
The optical constants of thin films of MgF2, LaF3, and CeF3 have been determined in the spectral range of 30-950 nm. Among them, MgF2 is a low refractive index material whereas LaF3 and CeF3 have a relatively high refractive index at short wavelengths; this contrast is adequate to make multilayer coatings. Fluoride thin films were deposited by evaporation onto substrates at 523 K. Optical constants were calculated using sets of transmittance, reflectance, and ellipsometry measurements. The measured optical constants were extended to a broader range with literature data and extrapolations in order to obtain self-consistent sets of data using the Kramers-Krönig analysis. The optical constant data here presented extend the available literature data both shortwards and longwards, particularly for CeF3 where few data had been reported.
The obtained optical constants of MgF2 and LaF3 were used to design narrowband reflective multilayer coatings for the short FUV. Multilayer coatings centered at 121 and at 130 nm with remarkable reflectance were prepared. The coatings kept a valuable reflectance after ageing in a desiccator for 12 months.
View contact details
No SPIE Account? Create one