GRAMS (Gamma-Ray and AntiMatter Survey) is a next-generation proposed balloon-borne/satellite-based mission aimed at high sensitivity MeV gamma-ray astrophysical observations and background-free indirect dark matter search via hadronic antiparticles. The main detector of GRAMS is a meter-scale liquid argon time projection chamber (LArTPC). The adoption of liquid argon as detector material allows us to produce an unprecedentedly large effective area instrument both for cosmic MeV gamma rays of 0.5-20 MeV and antiparticles of dark matter origin. This large effective area, which will exceed 1000 cm2, is necessary for measuring faint gamma-ray signals of nuclear line emissions from energetic phenomena such as supernovae as well as for observing short-duration transient objects including gamma-ray bursts with high photon statistics. In this talk, we present the mission concept and design, the current proof-of-concept studies using prototype LArTPCs, and an engineering balloon flight conducted in 2023.
HEX-P is a probe-class mission concept that combines the power of high angular resolution with broad bandpass coverage to provide the necessary leap in capabilities to address the important astrophysical questions of the next decade. HEX-P achieves its breakthrough performance by combining technologies developed by experienced partners and international collaborations. HEX-P will be launched into L1 for a high observing efficiency, and to meet the science goals the payload consists of a suite of three co-aligned X-ray telescopes designed to cover the 0.2 - 80 keV bandpass where accretion is at its peak. The High Energy Telescope (HET) has an effective bandpass of 2-80 keV, and the Low Energy Telescope (LET) an effective bandpass of 0.2-20 keV. The combination of bandpass and high observing efficiency delivers a powerful General Observer platform for a broad science that services a wide community base. The baseline mission is 5 years, with 30% of t
Axion is a promising dark matter candidate as well as a solution to the strong charge-parity (CP) problem in quantum chromodynamics (QCD). We describe a new concept for SmallSat Solar Axion and Activity X-ray Telescope (SSAXI) to search for solar axions or axion-like particles (ALPs) and to monitor solar activity over a wide dynamic range. SSAXI aims to unambiguously identify X-rays converted from axions in the solar magnetic field along the line of sight to the solar core, effectively imaging the solar core. SSAXI employs Miniature lightweight Wolter-I focusing X-ray optics (MiXO) and monolithic CMOS X-ray sensors in a compact package. The wide energy range (0.5 - 5 keV) of SSAXI can easily distinguish spectra of axion-converted X-rays from solar X-ray spectra, while encompassing the prime energy band (3 - 4.5 keV) of axion-converted X-rays. The high angular resolution (30 arcsec) and large field of view (40 arcmin) in SSAXI will easily resolve the enhanced X-ray flux over the 3 arcmin wide solar core while fully covering the X-ray activity over the entire solar disc. The fast readout in the inherently radiation tolerant CMOS X-ray sensors enables high resolution spectroscopy over a wide dynamic range with a broad range of operational temperatures. We present multiple mission implementation options for SSAXI under ESPA class. SSAXI will operate in a Sun-synchronous orbit for 1 yr preferably near a solar minimum to accumulate sufficient X-ray photon statistics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.