Functional Near-InfraRed Spectroscopy (fNIRS) measures cerebral hemodynamics associated with brain activation. Non-invasive optical measurements of cerebral hemodynamics are often confounded by superficial, extra-cerebral hemodynamics and by instrumental and motion artifacts. These confounds are especially prominent in optical intensity data collected at a single source-detector distance. Alternatively, slope methods and frequency-domain measurements of the phase of photon-density waves have been proposed. Here, we first demonstrate the ability of a special slope method (dual-slope) to efficiently suppress instrumental artifacts. Then, a dual-slope imaging array is utilized to generate and compare single-distance and dual-slope intensity and phase data collected on the visual cortex of a human subject during a contrast reversing visual stimulation protocol. The measured hemodynamic traces associated with visual stimulation exhibit a larger amplitude when they are derived from dual-slope versus single-distance data, and from phase versus intensity data. In particular, the functional hemodynamics obtained from dual-slope phase data feature the largest amplitude. These results indicate the greater sensitivity to brain tissue achieved by dual-slope versus single-distance data, and by phase versus intensity data. The conclusion of this work is that dual-slope intensity (in continuous-wave fNIRS) and dual-slope or single-distance phase (in frequency-domain fNIRS) appear to be most effective for functional brain measurements, with the significant practical advantage offered by the minimal sensitivity of dual-slope measurements to a variety of artifacts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.