KEYWORDS: Silicon, Solar cells, Polymethylmethacrylate, Scanning electron microscopy, Copper, Thin films, Nanowires, Image processing, Crystals, Thin film solar cells
Si Nanowires (NWs) have been commonly fabricated via expensive synthesis processes on particular substrates without some critical features such as mechanical flexibility and optical transparency. Lack of these features limit the applications in their potential research area. In this work, we demonstrated that ordered and disordered single crystalline silicon nanowires can be transferred from Si wafer onto a wide range of alien substrates while preserving their original order and alignment on the mother substrate. Vertically well-aligned Si NWs with different lengths and densities were successfully transferred on Ag-pre-coated glasses, transparent-conductive-oxides and metal foils (Cu), which enable ohmic contact formation between Si NWs and the employed substrates, which is essential for the fabrication of electronics and opto-electronics devices. This approach offers promise to construct low-cost device fabrication with highly crystalline semiconductor materials, which is a crucial step for the realization of next generation highly efficient core-shell solar cells. As an illustrative application, the transferred disordered Si NWs were then decorated with a thin layer of CZTS for the fabrication of a third generation solar cell, which has been exhibited the best power conversion efficiency so far in a device constructed with the same material combination.
Cadmium Zinc Telluride (CD1-xZnxTe has become a crucial material for x-ray and gamma ray detection due
to its wide band-gap, high atomic number and high density, which offer high efficiency and sharp spectroscopic resolution at room temperature. In addition, due to being lattice matched, it can also be used as substrate for the epitaxial growth of HgCdTe that can be used for infrared detection with high resolution. Hence, increasing the single crystal yield of CdZnTe from the grown ingot gained importance for the development of such detectors. In this study, a combination of modeling and experimental approaches has been developed in order to obtain high quality CdZnTe bulk crystals with good single crystal yield. A multi-zone Vertical Gradient Freeze (VGF) furnace was used for CdZnTe growth experiments. A global temperature model of the multi-zone furnace including complete geometry was employed using CrysMAS crystal growth modeling software. The correlation studies between the model and experimental behavior of the furnace are discussed in order to create a reliable model for temperature predictions. Temperature models were also included solid-liquid interface study in order to observe the interface shape at various stages of growth which would provide valuable insight about the quality and the yield of the ingot. Growth parameters and crucible geometries were estimated by CrysMAS simulations and interchanged between experiments. Effectiveness of temperature models and simulations was supported by experimental results such as single-crystalline yield, grain evolution and crystalline quality comparison by DCRC measurements of five successful crystal growths with moderate single crystal grain sizes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.