Over the last few years, tremendous progress has been gained in the generation and application of ultrashort radiation pulses. Recently, free-electron lasers generating ultrashort pulses with high peak power from the extreme ultraviolet (EUV) to the soft-x-ray region are opening a wide range of new scientific opportunities. Taking advantage of this short timescale permits probing ultrafast, out-of-equilibrium dynamics and the high intensities are key for nonlinear optics. The core structure of the extremely important light elements carbon, nitrogen, and oxygen can be accessed by soft-x-ray wavelengths by providing chemical sensitivity. Externally seeded free-electron lasers generate coherent pulses with the ability to be synchronized with femtosecond accuracy. In this contribution, we present new achievements in the generation of coherent ultrashort pulses in the range of EUV to the soft-x-ray in externally seeded FELs. In particular, we present the recently successful robust experiment at FERMI in Trieste, where few-femtosecond extreme-ultraviolet pulses were generated and characterized in terms of energy, and duration via autocorrelation.
Fundamental electron dynamics at the attosecond frontier and their direct coupling to structural dynamics of matter yield novel insights into the energy-distribution and protection mechanisms of Nature. The angular-streaking technique has exclusively demonstrated its capability of obtaining the full time-energy structure of XFEL pulses with attosecond resolution directly in the time-domain, thus enabling XFELs to study electron dynamics from element-specific vistas and their importance as onset of subsequent structural dynamics. We will present latest advances of this technique together with first results from the 2022 EuXFEL atto-campaign and the complementary prospects of the FLASH 2020+ innovation project at DESY.
We present the experimental evidence of the generation of coherent and statistically stable Free-Electron Laser (FEL) two color radiation obtained by seeding an electron double peaked beam in time and energy with a single peaked laser pulse. The FEL radiation presents two neat spectral lines, with time delay, frequency separation and relative intensity that can be accurately controlled. The analysis of the emission shows a temporal coherence and regularity in frequency significantly enhanced with respect to the Self Amplified Spontaneous Emission (SASE).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.