A compact optical terahertz (THz) source was demonstrated based on an efficient high-repetition-rate doubly resonant optical parametric oscillator (OPO) around 2 μm with two type-II phase-matched KTP crystals in the walk-off compensated configuration. The KTP OPO was intracavity pumped by an acousto-optical (AO) Q-switched Nd:YVO4 laser and emitted two tunable wavelengths near degeneracy. The tuning range extended continuously from 2.068 μm to 2.191 μm with a maximum output power of 3.29 W at 24 kHz, corresponding to an optical-optical conversion efficiency (from 808 nm to 2 μm) of 20.69%. The stable pulsed dual-wavelength operation provided an ideal pump source for generating terahertz wave of micro-watt level by the difference frequency generation (DFG) method. A 7.84-mm-long periodically inverted quasi-phase-matched (QPM) GaAs crystal with 6 periods was used to generate a terahertz wave, the maximum voltage of 180 mV at 1.244 THz was acquired by a 4.2-K Si bolometer, corresponding to average output power of 0.6 μW and DFG conversion efficiency of 4.32×10-7. The acceptance bandwidth was found to be larger than 0.35 THz (FWHM). As to the 15-mm-long GaSe crystal used in the type-II collinear DFG, a tunable THz source ranging from 0.503 THz to 3.63 THz with the maximum output voltage of 268 mV at 1.65 THz had been achieved, and the corresponding average output power and DFG conversion efficiency were 0.9 μW and 5.86×10-7 respectively. This provides a potential practical palm-top tunable THz sources for portable applications.
High-repetition-rate, monochromatic and tunable terahertz (THz) source is demonstrated. We use an orthogonally polarized dual-wavelength intracavity OPO to complete the type-II phase-matched collinear difference-frequency generation in GaSe. A high average-power 2 μm laser with 12 W output power and good beam quality based on an intracavity KTP OPO is experimentally designed. The KTP OPO is intracavity pumped by an acousto-optical Q-switched side-pumped Nd:YAG with the repetition rate of 10 kHz. Two identical KTP crystals were 7 × 8 × 15 mm3 in size, cut at θ = 51.2°, φ = 0°, which were tuned in the x-z plane to achieve type-II phase-matching. The KTP OPO consists of two identical KTP crystals to reduce the walk-off effect and improve the beam overlap area of the output signal and idler waves. The pulse-width of the 2-μm KTP OPO laser is about 11 ns with the linewidth about 0.8 nm. The focused OPO beam is injected into the uncoated GaSe with the length of 8 mm, and the generated THz wave is detected with a 4.2-K Si-bolometer after focusing with a polyethylene lens. The tunable and coherent radiation from 0.2 to 3 THz has been achieved based on the type-II phase-matching DFG when the two pump waves are in the range of 2.1064 - 2.1272 μm and 2.1516 - 2.1304 μm while symmetrically tuning the phase-matching angle of the KTPs. The maximum output THz average power can reach μW-level around 1.48 THz.
A high-power high efficiency picosecond (ps) 355 nm ultraviolet (UV) laser was reported based on the nonlinear optical crystal of type-I phase-matching La2CaB10O19 (LCB) which possesses the characteristic of non-hygroscopicity. The high-power third harmonic generation was successfully achieved from a 1064 nm ps fundamental laser. The maximum output power of 7.81 W of 355 nm UV laser was obtained from 35.2 W 1064 nm ps laser (80 MHz repetition rate, 10 ps pulse width) with optical conversion efficiency of 22.2%. The experimental results show that the LCB crystal has a promising prospect in generating high-power high efficiency UV laser.
We report a widely tunable terahertz source by using QPM-GaAs crystals pumped by a near-degenerate dual-wavelength KTP OPO around 2.127μm, based on difference frequency generation (DFG). The tunable THz radiation from 0.06 THz to 3.34 THz has been achieved in QPM-GaAs crystal with coherence length of 650 μm. The maximum output THz energy is 45 nJ with the peak power of 10 W at 1.68 THz, corresponding to the energy conversion efficiency of 5×10-6 and the photon conversion efficiency of about 0.08%.
In this paper, we proposed a method for THz sub-comb generation based on optical rectification. The result of our
calculation indicated that THz pulse train, generated by surface-emitted optical rectification (OR) of femtosecond (fs)
laser pulse in a periodically poled lithium niobate (PPLN), has a comb-like spectrum. The theoretical analysis was based
on radiating antenna model. The characteristic of this THz sub-comb was analyzed both in frequency and time domain.
The mechanism of this phenomenon was explained both by spectral interference between early and late pulses and by
high-order quasi phase matching. THz sub-comb generated by this method can cover a large bandwidth and have a wide
free spectral range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.