Long wavelength VCSELs at 1300 nm have been developed to serve 10-Gigabit enterprise networks over FDDI grade multimode fibers up to 300 m in distance. The long wavelength VCSELs operate CW at temperatures over 100 °C. They are ideal low cost alternatives to DFB lasers for transceivers and transponders compatible with IEEE 10GBASE-LX4 or 10GBASE-LRM standards over multimode fibers.
Over the last few years, Motorola has been applying a different kind of semiconductor laser technology to a family of datalink and discrete products. The laser technology is commonly referred to as Vertical Cavity Surface Emitting Lasers (VCSELs). This technology is now emerging from advanced development and research laboratories into the market place, and there is a number of introductory texts, inaddition to journal articles that describe the technology [1]. Motorola, has chosen the VCSEL technology to be the back-bone of it's optical program and has developed products such as the OPTOBUSTM datalink [1,2,3], which interconnects arrays of VCSELs inside a small, compact module via parallel fiber ribbon to receiver modules. As an extension to this technology, Motorola has designed new and novel ways to package the VCSELs. This paper will detail, inaddition to the packaging used in OPTOBUSTM, two approaches to discrete VCSEL packaging that are commercially competitive; the flip-chip and the angled angle TO-can. The essence of both these package designs is what is usually termed as 'auto-power control' (APC). This allows a feedback mechanism to feedback a signal to the laser, to control or change its output power level with respect to system conditions. Usually, this is accomplished by back facet monitor photodetectors in conventional edge emitting laser systems. As the VCSEL does not have facets, alternative solutions have to developed; the flip-chip and angled TO-can are shown to be good candidate.
High performance, low cost, and highly reliable vertical cavity surface emitting lasers (VCSELs) have been developed and are currently being used in both parallel and serial optical interconnect applications. For example, Motorola's OPTOBUSTM parallel optical interconnect relies heavily on the unique characteristics of arrays of GaAs based VCSELs emitting at 850 nm to achieve its stringent performance goals at low cost. Representative parametric results of discrete VCSELs and VCSEL arrays will be compared, including `optical power output-current' and `current-voltage' curves, optical wall plug efficiencies, and modulation characteristics. The use of statistical parameter analysis across a wafer and subsequent parametric wafer maps has proven to be a valuable tool for maintaining control of the fabrication process. The consistency of VCSEL parameters across individual VCSEL arrays will be discussed. VCSELs are very robust devices. Life times at room ambient in excess of 3E6 hours have been reported by several groups. Degradation behavior of selected device parameters will be discussed. Failure analysis demonstrating the effect of proton implant depth on reliability will be presented. ESD damage at forward bias is shown to be process related, while ESD damage at reverse bias is shown to be material related. These VCSELs are ESD Class 1 devices.
The use of vertical cavity surface emitting lasers (VCSELs) in a parallel optical interconnect for Motorola's OPTOBUSTM interconnect was made public over 1 year ago. This was the first time VCSELs were introduced into a product which took advantage of the excellent qualities of VCSELs over edge-emitting lasers. Motorola's OPTOBUSTM interconnect is a ten channel parallel bi-directional data link based on two 10 channel multimode fiber ribbons. One of the key differences in this type of interconnect compared with previous data link designs is the use of the VCSELs as the optical source for the link's fiber optic transmitter. A single 1 X 10 VCSEL array from a GaAs wafer is die attached to a 10 channel GUIDECASTTM optical interface unit which couples the emission from each laser device to its corresponding fiber ribbon channel and thus negates the use of expensive manufacturing techniques such as active alignment and pig-tailing. The OPTOBUSTM interconnect achieves its performance goals (which include low cost) via the unique characteristics of the GaAs VCSELs arrays. For example, the 850 nm devices produce a circular symmetric beam with a half angle of about 10 degrees allowing the coupling loss into the waveguide to be less than 3 dB. In addition, to maintain low manufacturing costs, each VCSEL array is individually and automatically probe tested (just as in the silicon industry) to verify that each VCSEL achieves the OPTOBUSTM interconnect's stringent electrical, optical, thermal and mechanical specifications. Typical computer generated wafer maps from automated production tooling and statistical parametric results are discussed. The combination of low threshold currents with superior thermal and optical performance allow the devices to be modulated under fixed bias conditions. Typical drive currents of 3X threshold are used to obtain nominal FDA Class 1 safety optical power levels from the GUIDECASTTM optical interface unit.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.