Hyperspectral remote sensing images are usually affected by atmospheric conditions such as clouds and their shadows, which represents a contamination of reflectance data and complicates the extraction of biophysical variables to monitor phenological cycles of crops. This paper explores a cloud removal approach based on reflectance prediction using multitemporal data and spatio-temporal statistical models. In particular, a covariance model that captures the behavior of spatial and temporal components in data simultaneously (i.e. non-separable) is considered. Eight weekly images collected from the Hyperion hyper-spectrometer instrument over an agricultural region of Saudi Arabia were used to reconstruct a scene with the presence of cloudy affected pixels over a center-pivot crop. A subset of reflectance values of cloud-free pixels from 50 bands in the spectral range from 426.82 to 884.7 nm at each date, were used as input to fit a parametric family of non-separable and stationary spatio-temporal covariance functions. Applying simple kriging as an interpolator, cloud affected pixels were replaced by cloud-free predicted values per band, obtaining their respective predicted spectral profiles at the same time. An exercise of reconstructing simulated cloudy pixels in a different swath was conducted to assess the model accuracy, achieving root mean square error (RMSE) values per band less than or equal to 3%. The spatial coherence of the results was also checked through absolute error distribution maps demonstrating their consistency.
Temporally rich hyperspectral time-series can provide unique time critical information on within-field variations in vegetation health and distribution needed by farmers to effectively optimize crop production. In this study, a dense timeseries of images were acquired from the Earth Observing-1 (EO-1) Hyperion sensor over an intensive farming area in the center of Saudi Arabia. After correction for atmospheric effects, optimal links between carefully selected explanatory hyperspectral vegetation indices and target vegetation characteristics were established using a machine learning approach. A dataset of in-situ measured leaf chlorophyll (Chll) and leaf area index (LAI), collected during five intensive field campaigns over a variety of crop types, were used to train the rule-based predictive models. The ability of the narrow-band hyperspectral reflectance information to robustly assess and discriminate dynamics in foliar biochemistry and biomass through empirical relationships were investigated. This also involved evaluations of the generalization and reproducibility of the predictions beyond the conditions of the training dataset. The very high temporal resolution of the satellite retrievals constituted a specifically intriguing feature that facilitated detection of total canopy Chl and LAI dynamics down to sub-weekly intervals. The study advocates the benefits associated with the availability of optimum spectral and temporal resolution spaceborne observations for agricultural management purposes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.