Recently, the full-area defect inspection of high-performance optical components such as large telescope mirrors is urgently demanded. An industrial robotic arm is suitable for conducting the scanning movement of defect inspection systems, and another monitoring system is needed to guide the moving trajectory of the robotic arm. An efficient and precise guiding system is developed based on a laser projection measuring system. After the calibration of the measuring system, real-time point clouds of the component under test can be acquired. Denoising and registration of the point clouds are conducted to align the robot coordinate system with the workpiece coordinate system. Then, the scanning inspection can be conducted all over the component under test. Experimental results demonstrate that the system has high efficiency and accuracy within 17.59 μm
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.