Paper
6 December 2004 Maskless lithography with the solid immersion lens nanoprobes
Author Affiliations +
Abstract
The International Technology Roadmap for Semiconductors (ITRS) shows that 45 nm and lower feature sizes are required in lithographic production before the year 2007. Both immersion lithography and EUV lithography can play major roles in realizing this goal. However, a maskless lithography system capable of producing 45 nm features is an attractive option for small-volume semiconductor fabrication, such as with ASIC manufactures. Compared with a conventional lithography system, the maskless feature of the system allows the chip designer to be free of the very expensive process of mask fabrication and to shortcut development time. In this paper, we discuss a new maskless lithography concept employing an array of solid immersion lens (SIL) nano-probes. The nano-probes are efficient near-field transducers. Each transducer is the combination a SIL, a dielectric probe tip and an antenna structure. The nano-probes are fabricated in arrays that dramatically improve throughput. By combining these technologies, it should be possible to fabricate an efficient array of near-field transducers with optical spot dimensions of around 20 nm when illuminated by a 405 nm laser diode source. This paper plans to address, for the first time, the efficient generation of an array of light spots with dimensions of λ/20 or less that couple efficiently into dielectric films, like photoresist.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Tom Milster, Tao Chen, Dongseok Nam, and Tuviah Ed Schlesinger "Maskless lithography with the solid immersion lens nanoprobes", Proc. SPIE 5567, 24th Annual BACUS Symposium on Photomask Technology, (6 December 2004); https://doi.org/10.1117/12.569328
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Transducers

Lithography

Semiconducting wafers

Dielectrics

Photoresist materials

Maskless lithography

Photomasks

Back to Top