Known for a long time in non-imaging optics, free form surfaces are progressively used in imaging optics. We will give an overview about several aspects from design and surface description for several state-of-the art systems.
Projection lenses for high resolution lithography have high NA and work at small wavelengths. In the wavelength regime of VUV (e.g. 193nm), there is a very limited number of optical glasses available, namely fused silica and calcium fluoride. The latter is very expensive and used only sparely, leading to limited possibilities for chromatic correction. In addition to catadioptric approaches, another way to deal with chromatic aberrations is the use of diffractive optical elements (DOEs). They have negative dispersion coupled with positive power and they do not contribute to the Petzval sum. Moreover, it is easy to integrate an aspherical functionality into the structure of the DOE. Usually a DOE is placed close to the aperture stop to correct axial color. The stop of a lithographic projection lens often is located at the largest diameter, causing some serious fabrication difficulties for the DOE. For this reason a class of lenses with intermediate image is of interest. Here, the accessible conjugate of the aperture stop enhances the possibilities to arrange the stop and the DOE. This allows a convenient tradeoff between fabrication challenges and aberration correcting properties. We present different lens designs that take advantage of the named properties of DOEs at high numerical aperture.
A design study leading to a new inline catadioptric design type is presented. The design is especially dedicated to be used with extreme ring field geometries not known in lithography optics so far. This may allow to increase the numerical aperture to the physical limits both in dry and immersion lithography. An exemplary system with high numerical aperture is shown.
Projection lenses for high resolution lithography have high NA and work at small wavelengths. In the wavelength regime of VUV (e.g. 193nm), there is a very limited number of optical glasses available, namely fused silica and calcium fluoride. The latter is very expensive and used only sparely, leading to limited possibilities for chromatic correction. In addition to catadioptric approaches, another way to deal with chromatic aberrations is the use of diffractive optical elements (DOEs). They have negative dispersion coupled with positive power and they do not contribute to the Petzval sum. Moreover, it is easy to integrate an aspherical functionality into the structure of the DOE. Usually a DOE is placed close to the aperture stop to correct axial color. The stop of a lithographic projection lens often is located at the largest diameter, causing some serious fabrication difficulties for the DOE. For this reason a class of lenses with intermediate image is of interest. Here, the accessible conjugate of the aperture stop enhances the possibilities to arrange the stop and the DOE. This allows a convenient tradeoff between fabrication challenges and aberration correcting properties. We present different lens designs that take advantage of the named properties of DOEs at high numerical aperture.
Recently, the development of high NA lenses for immersion lithography turned from dioptric concepts to catadioptric design forms. The introduction of mirrors involves the new challenge to deal with the inevitable obscuration of either field or pupil. We review the strategies used in this regard for microlithography, while focussing on the two most favored ones, folded and inline concepts. Although the vignetting situation is more complicated for inline systems, we report progress in this field of optical design yielding similar system performance for inline and folded designs. Since inline optical systems are much easier to realize, these are the concept of choice.
Conference Committee Involvement (3)
International Optical Design Conference 2021
27 June 2021 | Online Only, United States
Novel Optical Systems Design and Optimization XI
13 August 2008 | San Diego, California, United States
Novel Optical Systems Design and Optimization X
28 August 2007 | San Diego, California, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.