Upconverting nanoparticles (UCNPs) exhibit a unique nonlinear optical response, where the emission intensity in the UV/blue range increases non-linearly with the excitation intensity of a continuous-wave (CW) laser in the NIR range. This property can provide inherent three-dimensional (3D) capabilities for various applications. As a demonstration, we illustrate that 3D fluorescence imaging is achievable without the need for a pinhole or ultrafast pulsed lasers, allowing us to image mouse cerebrovascular networks up to the depth of around 700 μm through opaque brain tissues. Additionally, we demonstrate that co-dispersing UCNPs with photosensitizers enables depth-targeted photodynamic therapy with reduced damage to superficial cells. The nonlinear optical properties of UCNPs hold promise for providing 3D capabilities across a wide range of applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.