We fabricate directly modulated membrane distributed-reflector lasers on a Si platform using a micro-transfer printing method. Single-mode lasing with a low threshold current of 1.2 mA and 50-Gbaud-class direct modulation are demonstrated.
Herein, we investigated the performance of a Si waveguide-integrated superconducting nanowire single-photon detector (SNSPD) with an arrayed waveguide grating (AWG) comprising SiN/SiON. The system detection efficiency of SNSPD with AWG was unchanged whether the AWG is at a room or cryogenic temperature because the insertion loss was unchanged while the passband shifts 1.7-nm lower at cryogenic temperature. On the other hand, the dark count rate of the SNSPD with AWG decreased by approximately 20 dB when the AWG was at cryogenic temperature. The AWG at the cryogenic temperature functioned as a cold optical bandpass filter, which suppressed the dark count rate due to the background room-temperature blackbody radiation through fiber optics. The noise equivalent power (NEP) of the SNSPD with AWG improved from 4.8 × 10-17 W/Hz-1/2 for the room-temperature AWG to 2.2 × 10-18 W/Hz-1/2 for the cryogenic-temperature AWG. Results demonstrated that the integration of photonic circuits with SNSPD at the cryogenic temperature benefited not only scalability but also performance.
We describe a wafer prober integrated with an optical probe for wafer-level inspection of photonic integrated circuits. The design of the electric and photonic circuit was optimized for wafer-level inspection. The customized prober and circuit design enabled us to perform high-volume and high-speed inspection of over 400 elements, and sufficiently reliable results were obtained. It took about 10 sec. to evaluate the propagation loss of an element. This technology will be a key to reducing the costs of photonic devices.
Si photonics technology is promising for reducing the size and cost of optical transmitters because we can use mature Si-CMOS technologies to fabricate compact Si photonics devices on a large-scale Si wafer. For the optical transmitters, integration of lasers and silicon photonic devices is essential. Recently, heterogeneously integrated devices consisting of InP-based lasers and silicon Mach-Zehnder modulators (MZMs) have been developed, where the thickness of the Si waveguide in the laser gain section needs to be ~500 nm for index matching. On the other hand, silicon waveguide thickness between 200 and 300 nm is typically used in Si photonic devices; therefore, a Si thickness transition is necessary between the laser gain section and silicon MZMs. For changing the Si thickness, additional etching, deposition, or growth of Si layers is needed. However, these are not suitable solutions because device performance would be degraded by increasing the surface roughness and thickness variations of the Si waveguide.
In this work, we proposed a novel technique for integrating lasers and Si photonic devices without a Si thickness transition. We use a lateral current-injection membrane buried heterostructure (BH) as a laser gain section. This structure enables us to reduce the total thickness of the III-V region, resulting in the reduction of its effective refractive index. Therefore, the effective refractive index of the membrane BH laser can be matched to that of a 200-nm-thick Si waveguide, and the laser is suitable for integration with Si photonic devices.
Reduction of laser operating energy is a key issue to use the lasers in datacom and computercom networks because internet traffic is still increasing. To reduce operating energy, it is important to increase the optical confinement factor because the modulation efficiency is proportional to square root of optical confinement factor. Thus, the integration of thin membrane laser on SiO2/Si substrate is essential. Employing buried heterostructure (BH), in which the active region is buried with InP layer, is also important because BH provides efficient carrier confinement and thermal conductance. For datacom application, we have developed membrane Distributed Reflector (DR) laser array on SiO2/Si substrate. To fabricate BH, we have employed epitaxial growth of InP layer on a directly bonded InP on SiO2/Si substrate. We demonstrated an 8-channel DR laser array with integrating an SiN arrayed waveguide grating (AWG) filter. We have also developed photonic crystal (PhC) wavelength-scale cavity laser to obtain ultra-low operating energy for computercom application. The device exhibited a threshold current of 22 A, and a 7.3-fJ/bit energy cost directly modulated with a 10-Gbit/s NRZ signal. These results indicate that the membrane BH lasers on SiO2/Si substrate are highly suitable for use as a transmitter in datacom and computercom applications.
High-capacity optical transmitters with reduced size, cost, and power consumption are required to meet growing bandwidth requirements of network systems. A high-modulation-efficiency Mach-Zehnder modulator (MZM) on an Si platform is a key piece of equipment for these transmitters. Si-MZMs have been widely reported; however their performance is limited by the material properties of Si. To overcome the performance limitations of Si MZMs, we have integrated III-V materials on Si substrate and developed a heterogeneously integrated III-V/Si metal oxide semiconductor (MOS) capacitor phase shifter for constructing ultra-high efficient MZM, in which the n-InGaAsP, p-Si, and SiO2 film are used for constructing the MOS capacitor. The fabricated MZM with the MOS capacitor exhibited a VπL of 0.09 Vcm and insertion loss of ~2 dB. 32-Gbps modulation of the MZM was also demonstrated.
A high-efficiency and low-loss Mach-Zehnder modulator on a Si platform is a key component for meeting the demand for high-capacity, low-cost and low-power optical transceivers in future optical fiber links. We report a III-V/Si MOS capacitor Mach-Zehnder modulator with an ultrahigh-efficiency phase shifter, which consists of n-type InGaAsP and ptype Si. The main advantage of this structure is a large electron-induced refractive index change and low free-carrier absorption loss of the n-type InGaAsP. The heterogeneously integrated InGaAsP/Si MOS capacitor structure is fabricated by using the oxygen plasma assisted bonding method. The fabricated device shows VπL of 0.09 Vcm, a value over three-times smaller than that of the conventional Si MOS capacitor Mach-Zehnder modulator, without an increase in the insertion loss. This clearly indicates that the proposed III-V/Si MOS capacitor Mach-Zehnder modulator overcomes the performance limit of the Si Mach-Zehnder modulator.
Optical interconnects are expected to reduce the power consumption of ICT instruments. To realize chip-to-chip or chip-scale
optical interconnects, it is essential to fabricate semiconductor lasers with a smaller energy cost. In this context, we
are developing lambda-scale embedded active-region photonic-crystal (LEAP) lasers as light sources for chip-scale
optical interconnects.
We demonstrated the first continuous-wave (CW) operation of LEAP lasers in 2012 and reported a record low threshold
current and energy cost of 4.8 μA and 4.4 fJ/bit at 10 Gbit/s in 2013. We have also integrated photonic crystal
photodetectors on the same InP chip and demonstrated waveform transfer along 500-μm-long waveguides. Although
LEAP lasers exhibit excellent performance, they have to be integrated on Si wafers for use as light sources for chip-scale
optical interconnects.
In this paper, we give a brief overview of our LEAP lasers on InP and report our recent progress in fabricating them on
Si. We bonded the InP wafers with quantum-well gain layers directly on thermally oxidized Si wafers and performed all
process steps on the Si wafer, including high-temperature regrowth. After this process modification, we again achieved
CW operation and obtained a threshold current of 57 μA with a maximum output power of more than 3.5 μW at the
output waveguides. An output light was successfully guided through 500 × 250-nm InP waveguides.
Time division multiplexing has been generally used to increase the total throughput in optical communication systems. However, spatially-parallel optical interconnection technologies will be more effective over short distances (i.e., less than a few hundred meters). This is because data transmission in a parallel format makes system integration simple, reducing the latency of mux/demux functions, and thus results in lower power consumption and lower cost. VCSELs are very important for constructing parallel optical interconnection systems because they can emit a number of broadband optical signals simultaneously. In addition to their one- or two-dimensional structure, they have such advantages as a low cost, low operating current, and surface-normal emission. The surface-normal structure makes it easy to introduce optical input and output (I/O) into LSIs, which are important for constructing high-density optical interconnection systems.1
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.