KEYWORDS: Optical lithography, Metals, Etching, Transistors, Atomic layer deposition, Silica, Inspection, Electrodes, Transmission electron microscopy, System on a chip
The surrounding-gate-transistor (SGT) is a vertical gate-all-around device with a new design to exploit natural area gain for further scaling the SRAM size beyond N5 node. One of the benefits in SGT is it can fully decouple the dependency of the gate length (Lg) and the source/drain (S/D) contact size from the contact gate pitch (CGP) scaling, which is seen as a hard limit for the conventional scaling. To fully realize the benefit of area gain and Lg scaling independent from lithography, the patterning challenges of 3D vertical device structure must be resolved. In this paper, we report the MOL patterning challenges in SGT device fabrication, such as Metal recess process, Bottom Contact formation (VBG), Cross point formation (XC), Top electrode (TE) patterning.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.