SignificanceContinuous wave near infrared spectroscopy (CW-NIRS) is widely exploited in clinics to estimate skeletal muscles and brain cortex oxygenation. Spatially resolved spectroscopy (SRS) is generally implemented in commercial devices. However, SRS suffers from two main limitations: the a priori assumption on the spectral dependence of the reduced scattering coefficient [μs′(λ)] and the modeling of tissue as homogeneous.AimWe studied the accuracy and robustness of SRS NIRS. We investigated the errors in retrieving hemodynamic parameters, in particular tissue oxygen saturation (StO2), when μs′(λ) was varied from expected values, and when layered tissue was considered.ApproachWe simulated hemodynamic variations mimicking real-life scenarios for skeletal muscles. Simulations were performed by exploiting the analytical solutions of the photon diffusion equation in different geometries: (1) semi-infinite homogeneous medium and constant μs′(λ); (2) semi-infinite homogeneous medium and linear changes in μs′(λ); (3) two-layered media with a superficial thickness s1 = 5, 7.5, 10 mm and constant μs′(λ). All simulated data were obtained at source-detector distances ρ = 35, 40, 45 mm, and analyzed with the SRS approach to derive hemodynamic parameters (concentration of oxygenated and deoxygenated hemoglobin, total hemoglobin concentration, and tissue oxygen saturation, StO2) and their relative error.ResultsVariations in μs′(λ) affect the estimated StO2 (up to ±10 % ), especially if changes are different at the two wavelengths. However, the main limitation of the SRS method is the presence of a superficial layer: errors strongly larger than 20% were retrieved for the estimated StO2 when the superficial thickness exceeds 5 mm.ConclusionsThese results highlight the need for more sophisticated strategies (e.g., the use of multiple short and long distances) to reduce the influence of superficial tissues in retrieving hemodynamic parameters and warn the SRS users to be aware of the intrinsic limitation of this approach, particularly when exploited in the clinical environment.
Significance: Multi-laboratory initiatives are essential in performance assessment and standardization—crucial for bringing biophotonics to mature clinical use—to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison.
Aim: The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew.
Approach: The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging).
Results: This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of <5 % over 1 h, and day-to-day reproducibility of <3 % . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities.
Conclusions: This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset—available soon in an open data repository—can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations.
Significance: Tissue-like solid phantoms with identical optical properties, known within tolerant uncertainty, are of crucial importance in diffuse optics for instrumentation assessment, interlaboratory comparison studies, industrial standards, and multicentric clinical trials.
Aim: The reproducibility in fabrication of homogeneous solid phantoms is focused based on spectra measurements by instrument comparisons grounded on the time-resolved diffuse optics.
Approach: Epoxy-resin and silicone phantoms are considered as matrices and both employ three different instruments for time-resolved diffuse spectroscopy within the spectral range of 540 to 1100 nm. In particular, we fabricated two batches of five phantoms each in epoxy resin and silicone. Then, we evaluated the intra- and interbatch variability with respect to the instrument precision, by considering the coefficient of variation (CV) of absorption and reduced scattering coefficients.
Results: We observed a similar precision for the three instruments, within 2% for repeated measurements on the same phantom. For epoxy-resin phantoms, the intra- and the interbatch variability reached the instrument precision limit, demonstrating a very good phantom reproducibility. For the silicone phantoms, we observed larger values for intra- and interbatch variability. In particular, at worst, for reduced scattering coefficient interbatch CV was about 5%.
Conclusions: Results suggest that the fabrication of solid phantoms, especially considering epoxy-resin matrix, is highly reproducible, even if they come from different batch fabrications and are measured using different instruments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.