The semiconductor industry continually evaluates new materials to improve the process or minimize product variability, which could create measurement challenges for metrology tools in the visible and near-infrared (NIR) spectrum. Opaque materials (i.e., ‘hard masks,’ ‘HM’) are placed in between the resist (i.e., inner layer) and process (i.e., outer layer or underlying layer) in 3D NAND or DRAM processes to control the etch of high aspect-ratio structures to maximize product yield. However, longer wavelengths (e.g., IR WL) may be required to penetrate and properly view the underlying process layer and measure OVL accurately. In this work, longer wavelengths will be evaluated to improve measurement accuracy and keep up with the increasing use of opaque materials, which is expected to increase in future nodes. We will review the benefits of IR WL to OVL measurement accuracy by quantifying the OVL residuals, contrast precision (CP), and total measurement uncertainty (TMU) on multiple DRAM and 3D NAND critical layers.
We present a single-shot Fourier transform holography setup with ~100nm spatial resolution and 1 ns temporal resolution using a tabletop extreme ultraviolet (EUV) laser. Flash images allowed for the imaging of nano-pillars oscillating at MHz frequencies that will enable the evaluation of mechanical properties of nanoscale mechanical oscillators.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.